
How to generate a random unitary matrix

Maris Ozols

March 16, 2009

Contents

1 Introduction 1
1.1 Definitions . 2
1.2 Quantum physics from A to Z . 2
1.3 Haar measure . 3

2 Sampling uniformly from various sets 3
2.1 Sampling from S1 and SO(2) . 3
2.2 Sampling from S2 . 4

2.2.1 Using spherical coordinates 4
2.2.2 Using normal distribution 4

2.3 Sampling from U(2) . 5

3 Sampling uniformly from U(n) 5
3.1 Mathematica code . 5
3.2 Ginibre ensemble . 6
3.3 Group products . 7
3.4 QR decomposition . 8
3.5 Resulting distribution . 9

4 Other interesting stuff 10
4.1 Implementing QR decomposition 10
4.2 Householder reflections . 11
4.3 Subgroup algorithm . 13

1 Introduction

The purpose of this essay is to explain how to sample uniformly from U(n), the
set of all n×n unitary matrices, and why the method described actually works.
However, along the way we will learn how to sample form other interesting sets
too. This essay was inspired by [1]. A two-page introduction to the subject can
be found in [2].

1

1.1 Definitions

We will write MT for transpose and M† for conjugate-transpose of a matrix M ,
and I for the identity matrix. We will use M∗ to denote the entry-wise complex
conjugate of M . Here is some common notation that we will use:

• O(n) := {O ∈ Rn×n | OTO = I } – the orthogonal group,

• SO(n) := {O ∈ O(n) | detO = 1 } – the special orthogonal group,

• U(n) := {U ∈ Cn×n | U†U = I } – the unitary group,

• SU(n) := {U ∈ U(n) | detU = 1 } – the special unitary group,

• GL(n,C) := {M ∈ Cn×n | detM 6= 0 } – the general linear group over C,

• Sn−1 := {x ∈ Rn | x2
1 + x2

2 + · · ·+ x2
n = 1 } – the unit sphere in Rn whose

surface has dimension n− 1.

Note that the columns of an orthogonal matrix form an orthonormal basis
of Rn. Similarly, the columns of a unitary matrix form an orthonormal basis
of Cn (the inner product of column vectors u, v ∈ Cn is u†v ∈ C). Of course,
the same holds for rows. In this sense unitary matrix is a natural generalization
of an orthogonal matrix. In fact, quantum physicists would say that unitary
matrices are “more natural” than orthogonal ones.

1.2 Quantum physics from A to Z1

This section is both – an introduction to quantum mechanics and a motivation
for studying random unitary matrices.

Quantum mechanics is about solving the Scrödinger equation

i
dψ(t)

dt
= Hψ(t). (1)

Roughly speaking (1) says that the rate of change of the state ψ at time t is
“proportional” to its current value ψ(t) with the “proportionality coefficient”
being the Hamiltonian H. However, in reality ψ(t) ∈ Cn and H ∈ Cn×n is a
Hermitian matrix, i.e., H† = H.

If you forget this all for a minute and imagine that n = 1, then you can
easily solve (1) and get

ψ(t) = e−iHtψ(0). (2)

In fact, the same solution works in general (with the exponential of a ma-
trix properly defined). Now note that (e−iHt)† = eiHt, since H is Hermitian.
Therefore e−iHt is unitary for all t ∈ R. Thus physicists care about unitary
transformations, since they describe the evolution of a quantum system. When
physicists don’t understand what is going on, they use random unitary matrices.

1This title was inspired by an actual paper [3], whose one of many “contributions” to the
field is the insight that “Anton (Zeilinger) is a click in an Anton counter”.

2

1.3 Haar measure

Let f be a function defined on R (note that (R,+) is a group). Then for any
a ∈ R we have: ∫

R
f(x) dx =

∫
R
f(x+ a) dx. (3)

We can have a similar translational invariance on many other groups. If we
make a good choice of measure µ on our group G, then for all g ∈ G:∫

G

f(x) dµ(x) =
∫
G

f(gx) dµ(x). (4)

A non-zero measure µ : G→ [0,∞] such that for all S ⊆ G and g ∈ G:

µ(gS) = µ(Sg) = µ(S), (5)

where
µ(S) :=

∫
g∈S

dµ(g), (6)

is called Haar measure. It exists on every compact topological group (in partic-
ular, on unitary and orthogonal group) and is essentially unique [4].

If, in addition, µ(G) = 1, then µ is called probability measure on G. Indeed,
if f is a probability density function on G and dµ(g) := f(g) dg, then

µ(S) =
∫
g∈S

dµ(g) =
∫
g∈S

f(g) dg (7)

is the total probability of S.

2 Sampling uniformly from various sets

In this section we will discuss some simple examples of how to sample uniformly
from various sets. This is a warm-up for our main goal – sampling from U(n).

2.1 Sampling from S1 and SO(2)

The obvious parameterizations of S1 and SO(2) are

S1 =
{(

cosα
sinα

) ∣∣∣∣ 0 ≤ α < 2π
}

(8)

and

SO(2) =
{(

cosα − sinα
sinα cosα

) ∣∣∣∣ 0 ≤ α < 2π
}
. (9)

Clearly, we will get a uniform distribution over S1 and SO(2) if we choose
α ∈ [0, 2π] uniformly at random. The distribution over SO(2) will clearly have
the invariance property (5).

3

2.2 Sampling from S2

There are several ways how to sample from S2 uniformly [5]. We will discuss
two of them.

2.2.1 Using spherical coordinates

One can parameterize (x, y, z) ∈ S2 using spherical coordinates as follows:

x = sin θ cosϕ, (10)
y = sin θ sinϕ, (11)
z = cos θ, (12)

where 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π. It is important to note that one will not
obtain a uniform distribution over S2 by choosing θ and ϕ uniformly at random.
Instead, the points will be “bunched” close to poles [5]. This is because the area
element of S2 is given by

dS = sin θ dθ dϕ = − d(cos θ) dϕ. (13)

Hence, to obtain a uniform distribution over S2, one has to pick ϕ ∈ [0, 2π] and
t ∈ [−1, 1] uniformly at random and compute θ as follows:

θ = arccos t. (14)

In this way cos θ = t will be uniformly distributed in [−1, 1].

2.2.2 Using normal distribution

Another simple way of sampling uniformly from S2 is to choose each component
of r ∈ R3 independently from the standard normal distribution, i.e., the normal
distribution with mean 0 and variance 1. Its probability density function is

ϕ(x) =
e−

x2

2
√

2π
. (15)

Thus the joint probability density function of r = (x, y, z) is

f(r) =
(

1√
2π

)3

exp
(
−x

2 + y2 + z2

2

)
=
(

1√
2π

)3

exp

(
−‖r‖

2

2

)
. (16)

Note that f(r) does not depend on the direction of r, but only on its length
‖r‖. Thus r

‖r‖ is uniformly distributed over S2. This method generalizes in an
obvious way to Sn.

4

2.3 Sampling from U(2)

Now let us come back to the original question that we are trying to answer, i.e.,
how to sample from U(n). Let us first consider the case of U(2).

Let us use a similar approach as for S1 and S2 and parametrize U(2). Then
it remains to choose the right distribution for each parameter. Observe that

SU(2) =
{(

a b
−b∗ a∗

)
∈ C2×2

∣∣∣∣ |a|2 + |b|2 = 1
}
. (17)

Let us set
a := eiψ cosφ and b := eiχ sinφ, (18)

and introduce a global phase eiα. Then we can parametrize U(2) as follows [6]:

U(α, φ, ψ, χ) := eiα
(

eiψ cosφ eiχ sinφ
−e−iχ sinφ e−iψ cosφ

)
, (19)

where 0 ≤ φ ≤ π
2 and 0 ≤ α,ψ, χ < 2π. In this case it is not obvious at

all what probability distribution to use for each of the parameters to obtain
a uniform distribution over U(2). As before, knowing the expression for the
volume element is helpful [6, 7]:

dV =
1
2

sin(2φ) dα dφdψ dχ =
1
2

d(sin2 φ) dα dψ dχ. (20)

Now it becomes evident that one has to pick α,ψ, χ ∈ [0, 2π] and ξ ∈ [0, 1]
uniformly at random and compute

φ = arcsin
√
ξ. (21)

It turns out that one can generalize this idea to sample uniformly from
U(n) (see [6]). The main idea is to decompose an n × n unitary as a product
of two-level unitaries G(i, j) ∈ U(n) known as Givens rotations [8, 12]. Each
Givens rotationG(i, j) is just the n×n identity matrix with elements at positions(ii ij
ji jj

)
replaced by an arbitrary 2× 2 unitary matrix.

3 Sampling uniformly from U(n)

3.1 Mathematica code

Here is a “quick-and-dirty” way to produce a uniformly distributed unitary
matrix using Mathematica2:

RR:=RandomReal[NormalDistribution[0,1]];
RC:=RR+I*RR;
RG[n_]:=Table[RC,{n},{n}];
RU[n_]:=Orthogonalize[RG[n]];

2This code works in Mathematica 6.0 or any newer version, but does not work in older
versions. That is because the generation of random numbers and orthogonalization in previous
versions were done in a slightly different way.

5

This code is self-explanatory, except that Orthogonalize actually returns an
orthonormal basis. To use it for producing a random 4 × 4 unitary, one calls
RU[4]. It can be easily modified to sample from the orthogonal group:

RR:=RandomReal[NormalDistribution[0,1]];
RG[n_]:=Table[RR,{n},{n}];
RO[n_]:=Orthogonalize[RG[n]];

This is a quick but “dirty” implementation, since the resulting distribu-
tion over U(n) and O(n) depends on the orthogonalization method used by
the Mathematica’s function Orthogonalize. By default Mathematica uses the
Gram-Schmidt method [9], which happens to give the correct distribution [1, 2].
However, the built-in Householder method does not produce the correct distri-
bution [1]. In the next few sections we will try to explain why the above code
actually works.

3.2 Ginibre ensemble

The Ginibre ensemble consists of matrices Z ∈ Cn×n, whose elements zjk are
independent identically distributed standard normal complex random variables.
Such a matrix is generated by function RG in the above code.

The probability density function of zjk is

f(zjk) =
e−|zjk|2

π
. (22)

Thus the joint probability density function of Z is

fG(Z) =
1
πn2 exp

− n∑
j,k=1

|zjk|2
 =

1
πn2 exp

(
−Tr(Z†Z)

)
. (23)

Let us use the probability density function fG to define a measure

dµG(Z) := fG(Z) dZ, (24)

with dZ defined as follows:

dZ =
n∏

j,k=1

dxjk dyjk, where xjk + iyjk = zjk. (25)

Lemma 1. The measure dµG is invariant under U(n), i.e., for all U ∈ U(n) we
have: dµG(UZ) = dµG(Z) = dµG(ZU).

Proof. We will prove the left invariance (the proof of the right invariance is
similar). We have to show that fG(UZ) = fG(Z) and the Jacobian of the map
Z 7→ UZ (seen as a transformation in Cn2

) is one. From equation (23) we have:

fG(UZ) =
1
πn2 exp

(
−Tr

(
(UZ)†UZ

))
(26)

=
1
πn2 exp

(
−Tr

(
Z†U†UZ

))
= fG(Z). (27)

6

Note that in UZ the matrix U acts on each column of Z independently. If we
think of Z as a vector in Cn2

, we can decompose the action of U as an n-fold
direct sum U ′ := U ⊕ · · · ⊕ U︸ ︷︷ ︸

n

∈ U(n2). Clearly, |detU ′| = 1.

Now we know that the measure dµG is invariant under U(n). It remains to
understand why we will still obtain an invariant measure after we orthogonalize
the matrix Z from the Ginibre ensemble (see the code in Sect. 3.1).

3.3 Group products

Before we proceed, let us recall some facts from the group theory. Let G be a
group with two subgroups H1 and H2. Assume we have the following situation:

G = H1H2 and H1 ∩H2 = { e } . (28)

Then we would like to say that G is a “product” of H1 and H2. It turns out that
there are three different names used for such product, depending on whether
H1 and H2 are normal subgroups of G:

• G = H1 ×H2 – direct product, when H1 CG and H2 CG,

• G = H1 oH2 – semidirect product, when H1 CG,

• G = H1 on H2 – Zappa-Szép product3 (or knit product).

The reader might be familiar with the first two kids of products. However,
for our discussion the third of them will be the most relevant. In particular, we
will need the following decomposition[10]:

GL(n,C) = U(n) on T(n), (29)

where T(n) is the set of invertible n×n upper-triangular complex matrices with
positive diagonal entries. As a reality check, note that both U(n) and T(n) are
indeed subgroups of GL(n,C). Also note that we really have to use “on”, since
none of U(n) and T(n) is a normal subgroup of GL(n,C). We will discuss why
condition (28) is satisfied in the next section.

To understand why the decomposition (29) is important to us, we need the
following observation:

Lemma 2. If Z is a random matrix from the Ginibre ensemble, then we can
assume that Z is invertible. In other words, Z ∈ GL(n,C) with probability 1.

Proof. Assume we pick the first n−1 vectors (columns of Z) from Cn at random.
They span a linear subspace which is not the entire Cn. Clearly, the probability
that the last vector will lie in the same subspace is zero (every proper subspace
of Cn has measure zero in the whole Cn). Thus singular matrices form a measure
zero subset of Cn×n. Hence Z is invertible.

3I don’t know if there is any standard notation for this, so I made it up and use “on”.

7

Now we can think of the Ginibre ensemble as a probability distribution over
GL(n,C). Then decomposition (29) states that every matrix Z from the Ginibre
ensemble can be written as Z = UT for some unique U ∈ U(n) and T ∈ T(n).
To see why equation (29) holds, we will consider the QR decomposition of Z.

3.4 QR decomposition

Any matrix Z ∈ GL(n,C) can be decomposed as

Z = QR, (30)

where Q ∈ U(n) and R is upper-triangular and invertible. Expression (30)
is called QR decomposition of Z. QR decomposition is actually the same as
orthogonalization, just from a different point of view. Since R is invertible, we
can rewrite (30) as

ZR−1 = Q, (31)

which simply says that the columns of Z can be made orthonormal by multi-
plying it with an upper-triangular matrix on the right. This should not be too
surprising if one knows the Gram-Schmidt process for making an orthonormal
basis [11]. Let us recall how it works.

Let us denote the ith column of Z by vi ∈ Cn and apply the Gram-Schmidt
process to vectors {v1, . . . ,vn }. In the first iteration we normalize v1. In the
second iteration we subtract from v2 the component that is along the direction
of v1 and normalize the result. Similary, in the kth iteration we take a linear
combination of vectors {v1, . . . ,vk } that gives a unit vector orthogonal to the
subspace spanned by {v1, . . . ,vk−1 }. Since the kth iteration involves only
vectors {v1, . . . ,vk }, the Gram-Schmidt process can be realized by multiplying
with an upper-triangular matrix on the right: v1 v2 v3 . . . vn



∗ ∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ . . . ∗

. . .
...
∗

 . (32)

Thus for every Z ∈ GL(n,C) there exists R that is upper-triangular and invert-
ible, such that equation (31) holds. Therefore QR decomposition (30) exists for
every Z ∈ GL(n,C).

However, note that QR decomposition (30) it is not unique, since for any
diagonal matrix Λ ∈ U(n), we have

QR = (QΛ)(Λ∗R) = Q′R′, (33)

where Q′ = QΛ is unitary and R′ = Λ∗R is upper-triangular. Thus Z = Q′R′

is also a valid QR decomposition of Z. However, we can make it unique by
demanding that R ∈ T(n), i.e., R has positive diagonal entries. Then the only

8

Λ that can be used in (33) is the identity matrix I, since U(n) ∩ T(n) = { I }.
In this way we obtain the decomposition of GL(n,C) as a Zappa-Szép product
of U(n) and T(n) as in equation (29).

There are several practical considerations that one must take into account,
when implementing the decomposition (29). One possibility is to use the built-in
QR decomposition routine that is available in most contemporary programming
languages. However, then one must do some post-processing to make sure that
R ∈ T(n) and hence the decomposition is unique. In particular, given a pair
(Q,R) that is returned by a standard QR decomposition routine, one has to
compute a diagonal unitary matrix

Λ =


r11
|r11|

r22
|r22|

. . .
rnn

|rnn|

 , (34)

where rii are matrix elements of R and replace (Q,R) by

(Q′, R′) := (QΛ,Λ∗R) (35)

so that R′ ∈ T(n) (see [1] for more details). This can be achieved by the
following modification of the function RU defined in Sect. 3.1:

RU[n_]:=Module[{Q,R,r,L},
{Q,R}=QRDecomposition[RG[n]];
r=Diagonal[R];
L=DiagonalMatrix[r/Abs[r]];
Q.L

];

Compared to the previous code, this code is “clean” [1], since it does not depend
on the way QRDecomposition is implemented in Mathematica.

Another option is to use the Gram-Schmidt process to find Q as shown
in equation (31). This is what implicitly happens in our code in Sect. 3.1,
when we use the Mathematica’s built-in function Orthogonalize [9]. When
one uses the Gram-Schmidt algorithm, it is guaranteed that R−1 ∈ T(n), since
in the kth iteration one computes a linear combination that contains vk with a
positive coefficient. However, the Gram-Schmidt algorithm is not numerically
stable. Thus one might prefer to use the Householder’s method. Actually, it is
implicitly used in the above code, since QRDecomposition is implemented via
Householder reflections (see Sect. 4.1). For more details see [1] and [12].

3.5 Resulting distribution

Now we know that decomposition (29) indeed holds and Lemma 1 tells us that
the measure dµG of the Ginibre ensemble is invariant under U(n). It remains
to show that after we multiply Z (which is chosen from the Ginibre ensemble)

9

by R−1 ∈ T(n) as in equation (31), the obtained measure over U(n) will still
be invariant. In other words, we want to show that the last line of our code in
Sect. 3.1 does not spoil the invariance property of measure dµG.

Let us define an equivalence relation in GL(n,C) as follows:

Z ∼ Z ′ ⇔ Z ′ = UZ, where U ∈ U(n). (36)

Then we can use R to represent the equivalence class

[R] := {QR | Q ∈ U(n) } . (37)

Note that every equivalence class is a right coset of U(n) in GL(n,C). Since
the measure dµG is invariant under left-multiplication by U(n) and equivalence
classes (37) are closed under left-multiplication by U(n), the restriction of dµG
to equivalence class [R] is also left-invariant for every R ∈ T(n).

Now we can think of the Gram-Schmidt process as a map GL(n,C)→ U(n)
that acts follows: QR 7→ Q, i.e., it throws away the R part of Z = QR. In other
words, it “forgets” to which equivalence class Z belongs to. When we collapse
all equivalence classes to a single class isomorphic to U(n) via Gram-Schmidt
process, the resulting measure will be invariant, since dµG was invariant in each
equivalence class. Another way to think about this is that the measure dµG
decomposes as a product of measures on U(n) and T(n), see Theorem 1 in [1].

This concludes our discussion on the correctness of the algorithm presented
in Sect. 3.1 for generating unitaries uniformly at random. However, there are
two more useful things that are related to our discussion. First, we will give
more details on how to implement the QR decomposition using Householder re-
flections. Second, we will see how our algorithm for generating random unitaries
fits into the “big picture”.

4 Other interesting stuff

4.1 Implementing QR decomposition

QR decomposition is usually implemented using Householder reflections. It
works as follows. Assume that for given v ∈ Cn we construct a transformation
H(v) ∈ U(n) that depends on v, such that

H(v) · v = ‖v‖ e1, (38)

where e1 is the first basis vector of the standard basis of Cn (we will discuss the
implementation of H(v) in the next section). Let Zn ∈ GL(n,C) and vn be its
first column. Then the first column of H(vn) · Zn is ‖vn‖ e1, i.e.,

H(vn) ·

 vn . . .

 =


‖vn‖

0
... Zn−1

0

 . (39)

10

Similarly, let the first column of the lower (n− 1)× (n− 1) block Zn−1 in (39)
be vn−1 ∈ Cn−1. Then we can find H(vn−1) ∈ U(n− 1), such that

1 0 . . . 0
0
... H(vn−1)
0

 ·

‖vn‖

0
... vn−1

0

 = (40)


‖vn‖

0 ‖vn−1‖
0 0
...

... Zn−2

0 0

 . (41)

If we continue in a similar way, we end up with an upper-triangular matrix
whose diagonal entries are positive, i.e.,

H̃(v1) · H̃(v2) · . . . · H̃(vn−1) ·H(vn) · Z = R, (42)

where R ∈ T(n) and H̃(vi) = In−i ⊕H(vi) as in equation (40). Thus

Z =
(
H(vn)† · H̃(vn−1)† · . . . · H̃(v2)† · H̃(v1)†

)
·R (43)

is the unique QR decomposition of Z. It remains to understand how one imple-
ments the transformation H(v) satisfying equation (38).

4.2 Householder reflections

In this section we will describe how to implement a transformation that satisfies
equation (38). To make thing simpler, let us first consider the real Euclidean
space Rn, instead of Cn. It will be simple to go from Rn to Cn afterwards.

Given a unit vector u ∈ Rn, consider the following transformation

H := I − 2 u · uT. (44)

Note that HT = H and H2 = I, thus the matrix H is symmetric and orthogonal.
It is called Householder reflection, since H performs a reflection with respect to
a hyperplane orthogonal to u:

H ·w =

{
−w when w = c u,

+w when w ⊥ u.
(45)

The nice thing about this transformation is that one does not need to explicitly
compute the matrix representation of H in order to apply it on w, since [12]

H ·w = w − 2 u
(
uT ·w

)
. (46)

11

v

u(v)

e1

‖v‖ e1

v − ‖v‖ e1

1

v

u(v)

e1

−‖v‖ e1

v + ‖v‖ e1

Figure 1: Householder reflection (48) with respect to a hyperplane that is or-
thogonal to u(v) defined in equation (49). When v1 < 0, it sends v to ‖v‖ e1

(the picture on the left), but when v1 > 0, it sends v to −‖v‖ e1 (the picture
on the right), so the sign must be corrected as in equation (50).

Let us use the above idea to construct a transformation H(v) ∈ O(n) for
given v ∈ Rn, such that H(v) ·v = ‖v‖ e1. Clearly, any n×n orthogonal matrix
whose first row is v/ ‖v‖ does the job. However, we would like H(v) to be a
Householder reflection, so that it can be implemented as in equation (46).

Let u(v) ∈ span {v, e1 } be a unit vector defined as follows4:

u(v) :=
v − ‖v‖ e1∥∥v − ‖v‖ e1

∥∥ . (47)

Note that u(v) is orthogonal to v + ‖v‖ e1 – the interior bisector of the angle
between v and e1 (see the picture on the left in Fig. 1). We choose H(v) to be
the Householder reflection with respect to a hyperplane orthogonal to u(v):

H(v) := I − 2 u(v) · u(v)T. (48)

One can check that H(v) satisfies H(v) · v = ‖v‖ e1.
However, there is one problem with the definition (47) of u(v) – it does not

work when v = ‖v‖ e1. In addition, it is not numerically stable as well. To see
this, let v = (v1, v2, . . . , vn), where v1 > 0 is large and all other components
have small absolute value. Then the norm of v − ‖v‖ e1 is very small and thus
the denominator of (47) is close to zero.

To avoid this, for v1 > 0 we choose u(v) to be orthogonal to the bisector
between v and −e1 instead (see the picture on the right in Fig. 1). In general
we define u(v) as follows [1, 12]:

u(v) :=
v + sgn(v1) ‖v‖ e1∥∥v + sgn(v1) ‖v‖ e1

∥∥ . (49)

Note that this definition is consistent with (47) when v1 < 0. It is also numeri-
cally stable, since the denominator of (49) will not be small, unless ‖v‖ is small.

4Our convention of signs in equations (47) and (48) differs from that of [1] in order to be
consistent with the definition (44) of the Householder reflection.

12

One must be careful of how the sign function “sgn” is implemented though (e.g.,
Sign[0]=0 in Mathematica). The choice of the value for sgn(0) is irrelevant,
unless it is fixed and either +1 or −1.

Most practical implementations of QR decomposition use the definition (48)
of H(v) together with the definition (49) of u(v), see [1]. Unfortunately, in such
case equation (38) no longer holds, since H(v) · v = ±‖v‖ e1. Thus the matrix
R returned by QR decomposition (43) no longer has positive diagonal entries.
This causes a problem when QR decomposition is used to generate unitaries
uniformly at random [1].

This can be fixed by post-processing the output of the QR decomposition
routine as described in Sect. 3.4. However, if one implements the QR decom-
position from scratch using Householder reflections, one can simply incorporate
the sign in the definition (48) of H(v) as follows [1]:

H(v) := − sgn(v1)
(
I − 2 u(v) · u(v)T

)
. (50)

Note that this definition is consistent with (48) when v1 < 0. Thus, when
implementing the unique QR decomposition via Householder reflections, one
should use the definition (50) of H(v) with u(v) defined in (49).

It is straightforward to generalize equations (50) and (49) for v ∈ Cn and
H(v) ∈ U(n):

H(v) := −e−iθ
(
I − 2 u(v) · u(v)†

)
(51)

and

u(v) :=
v + eiθ ‖v‖ e1∥∥v + eiθ ‖v‖ e1

∥∥ , (52)

where v = (v1, v2, . . . , vn) and v1 = eiθ |v1|. Note that this implementation is
also numerically stable.

4.3 Subgroup algorithm

Let us conclude our discussion with an approach for generating random ele-
ments, that is common for both finite and compact groups. This approach is
known as the subgroup algorithm and was developed by Diaconis and Shahsha-
hani [13]. Sorry, I did not have time to finish this. You can find more information
on this here: [1, 13, 14].

References

[1] Francesco Mezzadri, “How to Generate Random Matrices from the Classi-
cal Compact Groups,” Notices of the AMS, Volume 54, Issue 5, pp. 592-604,
May 2007. arXiv:math-ph/0609050v2
http://www.ams.org/notices/200705/fea-mezzadri-web.pdf

[2] Persi Diaconis, “What is. . . a random matrix?” Notices of the AMS, Vol-
ume 52, Issue 11, pp. 1348-1349, December 2005.
http://www.ams.org/notices/200511/what-is.pdf

13

http://arxiv.org/abs/math-ph/0609050
http://www.ams.org/notices/200705/fea-mezzadri-web.pdf
http://www.ams.org/notices/200511/what-is.pdf

[3] A bunch of authors, “Quantum Physics from A to Z”.
arXiv:quant-ph/0505187v4

[4] Simon Rubinstein-Salzedo, “On the Existence and Uniqueness of Invariant
Measures on Locally Compact Groups,” 2004.
http://www.artofproblemsolving.com/LaTeX/Examples/
HaarMeasure.pdf

[5] Eric W. Weisstein, “Sphere Point Picking,” MathWorld.
http://mathworld.wolfram.com/SpherePointPicking.html

[6] Karol Życzkowski, Marek Kuś, “Random unitary matrices,” J. Phys. A:
Math. Gen., Volume 27, Number 12, pp. 4235–4245, 1994.

[7] Luis J. Boya, E. C. G. Sudarshan, Todd Tilma, “Volumes of Compact
Manifolds,” Reports on Mathematical Physics, Volume 52, Issue 3, pp. 401–
422, December 2003. arXiv:math-ph/0210033v3

[8] George Cybenko, “Reducing Quantum Computations to Elementary Uni-
tary Operations,” Computing in Science and Engineering, vol. 3, no. 2,
pp. 27–32, 2001.

[9] Mathematica documentation on Orthogonalize.
http://reference.wolfram.com/mathematica/ref/
Orthogonalize.html

[10] “Zappa-Szép product,” Wikipedia.
http://en.wikipedia.org/wiki/Zappa-Szép product

[11] “Gram-Schmidt process,” Wikipedia.
http://en.wikipedia.org/wiki/Gram-Schmidt process

[12] Lenka Č́ıžková, Pavel Č́ıžek, “Matrix Decompositions”, Chapter II.4.1 in
“Handbook of Computational Statistics: Concepts and Methods,” pp. 104,
Birkhäuser, 2004. Editors: James E. Gentle, Wolfgang Härdle, Yuichi Mori.
http://mars.wiwi.hu-berlin.de/ebooks/html/csa/node36.html

[13] Persi Diaconis, Mehrdad Shahshahani, “The subgroup algorithm for gen-
erating uniform random variables,” Prob. Eng. Inf. Sc. 1, pp. 15–32, 1987.

[14] G. W. Stewart “The Efficient Generation of Random Orthogonal Matrices
with an Application to Condition Estimators,” SIAM Journal on Numerical
Analysis, Vol. 17, No. 3, pp. 403–409, June 1980.

14

http://arxiv.org/abs/quant-ph/0505187
http://www.artofproblemsolving.com/LaTeX/Examples/HaarMeasure.pdf
http://www.artofproblemsolving.com/LaTeX/Examples/HaarMeasure.pdf
http://mathworld.wolfram.com/SpherePointPicking.html
http://arxiv.org/abs/math-ph/0210033
http://reference.wolfram.com/mathematica/ref/Orthogonalize.html
http://reference.wolfram.com/mathematica/ref/Orthogonalize.html
http://en.wikipedia.org/wiki/Zappa-Sz%C3%A9p_product
http://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process
http://mars.wiwi.hu-berlin.de/ebooks/html/csa/node36.html

	1 Introduction
	1.1 Definitions
	1.2 Quantum physics from A to Z
	1.3 Haar measure

	2 Sampling uniformly from various sets
	2.1 Sampling from S1 and SO(2)
	2.2 Sampling from S2
	2.2.1 Using spherical coordinates
	2.2.2 Using normal distribution

	2.3 Sampling from U(2)

	3 Sampling uniformly from U(n)
	3.1 Mathematica code
	3.2 Ginibre ensemble
	3.3 Group products
	3.4 QR decomposition
	3.5 Resulting distribution

	4 Other interesting stuff
	4.1 Implementing QR decomposition
	4.2 Householder reflections
	4.3 Subgroup algorithm

